The Chief Data Officer’s Guide to an AI Strategy

Advances in artificial intelligence demand that data and analytics leaders have a strategy for harnessing its potential.

It’s hard to read the news or scan social media without seeing examples of artificial intelligence (AI) in action. Some of its most talked about applications include roboadvisors and robotraders in the finance industry, chatbots and personal buying assistants in retail, medical diagnostics,  remote patient monitoring and AI tutors for personalized education.

Despite the hype, it’s early days.

“Many organizations are just beginning their AI journey, gathering knowledge and developing strategies for applying it,” says Mike Rollings, research vice president at Gartner.

Now’s the time to define your AI strategy and assess its impact on business models and customer experience.

AI doesn’t only offer the potential to radically improve existing business activities, but instead creates the potential for data-driven business strategies. This makes data and analytics a primary driver of strategy, which in turn mandates a more expansive examination of the potential for AI.

If you’re a chief data officer (CDO), now’s the time to define your AI strategy and assess its impact on business models and customer experience, Rollings says.

The Top 10 Megatrends in Analytics
Be on the cusp of transformative analytic changes.
Attend Webinar

How to get started

It’s not enough to look at AI in the same way as we have typically created a data and analytics strategy as a byproduct of other strategy work. Rollings recommends focusing on three areas:

  1. Develop clear line of sight to business value. Start by assessing the relevance of AI to your most important business outcomes and how it can fuel new data-driven capabilities, as well as in relation to specific operational and IT challenges. Many organizations become enamoured with AI capabilities, but in the process they fail to determine the most strategic value drivers.
  2. Harness disruptive potential in customer experience. A survey of Gartner Research Circle members found that the top three types of AI applications that they used or plan to use all relate to improving customer experience. AI presents unique opportunities for gaining insight and creating personalization. By 2020, 25% of customer service and support operations will integrate smart technology virtual customer assistants across engagement channels.
  3. Address organizational, governance and technological impacts. Prepare for the organizational, governance and technological challenges imposed by AI. Focus on developing a data-driven culture, data science skills and the ability to “speak data” from a business perspective.

Be mindful of regulatory and ethical considerations. It is possible that the same data with the same analytics may be governed differently based on the use context — one being ethically okay and the other potentially not, and with the same being potentially true for security, privacy, compliance, retention and other once separate questions. As a result, data and analytics leaders will need to raise governance issues as part of normal business discussions.


Gartner clients can read more in “A Chief Data Officer's Guide to an AI Strategy” by Mike Rollings and Thomas OestreichThis research is part of the Gartner Special Report “Craft an Artificial Intelligence Strategy,” a collection of research aimed at helping CIOs incorporate AI into their strategic planning and evaluation processes for business transformation.

Get Smarter

100 Data and Analytics Predictions Through 2021

Over the next few years, data and analytics programs will become even more mission-critical throughout the business and across industries....

Read Free Research

Data Lake, What Else?

I Data lakes sono il nuovo must-have nella gestione delle informazioni. Ma perché? Questo Webinar esplora i benefici e i requisiti di...

Start Watching

Follow #GartnerDA

Learn more at the Gartner Data & Analytics Summits.

Explore Gartner Events