Use Data and Analytics to Tell a Story

How to make a time-oriented narrative arc relate directly to the priorities of decision makers.

When Florence Nightingale analyzed mortality rates from the Crimean War, she realized that the majority of soldiers hadn’t died in combat, but instead from preventable diseases caused by poor sanitary conditions in the hospitals.

To convince the British Parliament and Queen Victoria to invest in better sanitary conditions, Nightingale created a diagram of the causes of mortality in the army. She used a data story to successfully argue the need for better sanitary conditions and saved the lives of countless soldiers.

Data stories explore and explain how and why data changes over time, usually through a series of linked visualizations

The story and outcome are dramatic, but at its heart, this is a data story. It contains data points on time, location, volume, trend, significance and proportion. It uses empathy, and it has a plot and a hero. It ends with a question and some options. Data storytelling was in important in Nightingale’s time — and it matters even more in today’s digital data-abundant world.

Getting Started With Data Literacy and Information as a Second Language

Help your organization speak data in a common way.

Get the Research

“The ways in which organizations deliver business analytics insights are evolving, notably in the rising use of what is called data storytelling,” says James Richardson, Senior Director Analyst at Gartner. “Data and analytics teams have always created dashboards and visualizations, but many are unfamiliar with wrapping those artifacts into a narrative.”

Data stories explore and explain how and why data changes over time, usually through a series of linked visualizations. Although visualization is almost always a key element in data stories, it is only one piece of a three-part strategy.

Storytelling = visualization + narrative + context

Self-service BI and analytics platform users now have access to a range of capabilities to help them create compelling data stories. They use an array of data visualization forms, ranging from chart types to geographic mapping, and more varied and sophisticated charts such as heat maps and candlestick charts.

It is important to note that there is no one visualization that works for all situations. Data and analytics storytellers must choose a fitting visualization based on the kind of data they want to present and the audience to which they want to present it. Arranged into a time or conceptual sequence, these visualizations can be shaped into a narrative to help reveal findings, trends or underlying patterns.

It’s the context around the data that provides value and that’s what will make people listen and engage

“A data story starts out like any other story, with a beginning and a middle,” Richardson says. “However, the end should never be a fixed event, but rather a set of options or questions to trigger an action from the audience. Never forget that the goal of data storytelling is to encourage and energize critical thinking for business decisions.”

A narrative that simply describes data would be of limited use for decision makers. It’s the context around the data that provides value and that’s what will make people listen and engage. Similar to visualizations, the context should be chosen based on the audience.

The sales team may love the story of the gifted salesman who snatched the contract from a competitor with a single well-chosen data point to the prospect’s CEO while in an elevator. However, this will not have the same appeal for the finance team, who wants to hear about predictable outcomes from efficiently executed processes and contract negotiation.

Data stories are about engagement

The audience for the data story is key to getting value when it comes to making a decision based on its findings. They need to be actively engaged, not passive receptors of information, whose task is to explore and question the narrative.

“All human storytellers bring their subjectivity to their narratives. All have bias, and possibly error. Acknowledging and defusing that bias is a vital part of successfully using data stories,” says Richardson. “By debating a data story collaboratively and subjecting it to critical thinking, organizations can get much higher levels of engagement with data and analytics and impact their decision making much more than with reports and dashboards alone.”

This article has been updated from the original, published on March 8, 2017, to reflect new events, conditions or research.  

Gartner clients can learn more in Beyond BI Reporting: Engaging Decision Makers Through Data Storytelling by James Richardson. More information on the future of data and analytics can be found in the Gartner Featured Insight research collection “The Future of Data and Analytics,” a collection of research that explores new strategies, guidance and best practices across across the data and analytics spectrum.

Get Smarter

Gartner Data & Analytics Summits

Get the tools and insights you need to build on the fundamentals of data and analytics.

Explore Gartner Conferences

Predicts 2019: Data and Analytics Strategy

Data and analytics are the key accelerants of digitalization, transformation and “ContinuousNext” efforts. As a result, data and analytics leaders will be counted upon to affect corporate strategy and value, change management, business ethics, and execution performance.

Read Free Gartner Research


Get actionable advice in 60 minutes from the world's most respected experts. Keep pace with the latest issues that impact business.

Start Watching